

**Course:** Discrete Mathematics

**Course Number:** MATH218

**Department:** Mathematics

**Course Description:** This course is designed to give necessary mathematical background to students in computer science programs. Topics include logic, sets, basic number theory, induction and recursion, counting, relations, and graphs. Prerequisite: C- or higher in MATH217 Precalculus; waiver by placement testing results; or departmental approval.

| COURSE OUTCOMES                                                                | SAMPLE OUTCOMES ACTIVITIES                                                                                                                                                                                                                                                                                                                                                   | SAMPLE ASSESSMENT TOOLS                                                                                              |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Upon successful completion of this course students should:                     | To achieve these outcomes students may engage in the following activities:                                                                                                                                                                                                                                                                                                   | Student learning may be assessed by:                                                                                 |
| 1. Demonstrate an understanding of logic and proofs; (QL)                      | <ul style="list-style-type: none"><li>Express written statements as statements using propositional logic notation</li><li>Use propositional logic to determine truth values of statements</li><li>Examine strategies for writing mathematical proofs and for avoiding mistakes in writing proofs</li></ul>                                                                   | <ul style="list-style-type: none"><li>Homework</li><li>In-class problem sets</li><li>Quizzes</li><li>Exams</li></ul> |
| 2. Demonstrate an understanding of set notation, matrices, and functions; (QL) | <ul style="list-style-type: none"><li>Use set notation to represent a collection of objects</li><li>Perform set operations</li><li>Examine properties and operations of functions</li><li>Develop notation for sequences and summations</li><li>Examine notation and operations involving matrices</li><li>Describe growth rates of functions using big-O notation</li></ul> | <ul style="list-style-type: none"><li>Homework</li><li>In-class problem sets</li><li>Quizzes</li><li>Exams</li></ul> |

|                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| <p>3. Demonstrate an understanding of necessary concepts from introductory number theory; (QL)</p> | <ul style="list-style-type: none"> <li>• Perform operations using modular arithmetic</li> <li>• Convert numbers between different bases</li> <li>• Determine whether values are prime and use the Euclidean algorithm to find the greatest common divisor</li> <li>• Solve congruences</li> </ul>                                                                                                                                    | <ul style="list-style-type: none"> <li>• Homework</li> <li>• In-class problem sets</li> <li>• Quizzes</li> <li>• Exams</li> </ul> |
| <p>4. Prove mathematical statements using induction; (QL)</p>                                      | <ul style="list-style-type: none"> <li>• Determine when mathematical induction serves as an appropriate proof technique</li> <li>• Perform proofs by induction by constructing appropriate basis and inductive steps</li> <li>• Determine when strong induction or the well-ordering property should be used in proofs</li> <li>• Define functions recursively and perform proofs involving recursively defined functions</li> </ul> | <ul style="list-style-type: none"> <li>• Homework</li> <li>• In-class problem sets</li> <li>• Quizzes</li> <li>• Exams</li> </ul> |
| <p>5. Use counting techniques for problem solving; (QL)</p>                                        | <ul style="list-style-type: none"> <li>• Use the product, sum, inclusion-exclusion, and division rules to solve counting problems</li> <li>• Use the Pigeonhole Principle to solve counting problems</li> <li>• Determine the difference between combinations and permutations and using each in solving counting problems</li> </ul>                                                                                                | <ul style="list-style-type: none"> <li>• Homework</li> <li>• In-class problem sets</li> <li>• Quizzes</li> <li>• Exams</li> </ul> |

|                                                                                    |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    | <ul style="list-style-type: none"> <li>• Solve applications of recurrence relations</li> </ul>                                                                                                                                                                                                                                          |                                                                                                                                   |
| 6. Demonstrate an understanding of the relationship between elements of sets; (QL) | <ul style="list-style-type: none"> <li>• Determine when a relation is reflexive, symmetric, antisymmetric, and/or transitive</li> <li>• Represent relations using matrices and/or graphs.</li> <li>• Find equivalence classes</li> </ul>                                                                                                | <ul style="list-style-type: none"> <li>• Homework</li> <li>• In-class problem sets</li> <li>• Quizzes</li> <li>• Exams</li> </ul> |
| 7. Demonstrate an understanding of graphs; (QL)                                    | <ul style="list-style-type: none"> <li>• Examine definitions and terminologies of basic graph theory</li> <li>• Construct graphs</li> <li>• Classify paths and connectivity of graphs</li> <li>• Determine whether a graph has an Euler circuit or an Euler path</li> <li>• Determine whether a graph has a Hamiltonian path</li> </ul> | <ul style="list-style-type: none"> <li>• Homework</li> <li>• In-class problem sets</li> <li>• Quizzes</li> <li>• Exams</li> </ul> |

This course includes the following core competencies: Quantitative Literacy (QL)