
OUTCOMES BASED LEARNING MATRIX

Course: CTIM 285 Python (3 credit, 4 contact hours)
Department: Computer Technology and Information Management

Description:

This course will give the student an understanding of Python, an object-oriented scripting language, and the role of Python in the object-oriented
and scripting worlds. The student will create simple programs using sequence, selection, repetition and functions and develop advanced Python
programming skills that are required to fully utilize the capabilities of this object-oriented scripting language; objects, classes, strings, lists,
inheritance, polymorphism, files, tuples/sets/dictionaries, exceptions, recursion, and GUI programming. The student will create sophisticated
programs.

Prerequisite: Introduction to Java Programming (CTIM157) or Programming in C++ (CTIM371) or Departmental Approval.

While completing the table below, remember that the individual outcomes you list in the first column should answer this question: What must the
learner know and be able to do at the end of the course? Items in the third column should answer the question: How do we know? The second
column is where teachers can be most creative; it's for pedagogy. Each rectangle in column one should contain just one outcome; the
corresponding rectangles in columns two and three, however, may contain more than one item. Use the code at the end of the matrix, indicate the
core competencies being strengthened by the outcomes activities and the assessment tools.

*COURSE OUTCOMES OUTCOMES ACTIVITIES ASSESSMENT TOOLS

At the end of this course students will be
able to create simple programs using
Python to include.

1. Explore the Python programming
language

1. Explore basic computer
architecture (CCT, OC, QL, IL,
WC, IG)

2. Explore basic Internet architecture
(CCT, OC, QL, IL, WC, IG)

3. Design Python programs (CCT,
OC, QL, IL, WC, IG)

4. Compile Python programs (CCT,
OC, QL, IL, WC, IG)

5. Run Python programs (CCT, OC,
QL, IL, WC, IG)

1. Quizzes, tests, projects, class
participation, homework
assignments (CCT, OC, QL, IL,
WC, IG).

2. Work with types: numbers, strings,
lists, dictionaries, tuples, and files

3. Use/manipulate types (CCT, OC,
QL, IL, WC, IG)

4. Use/manipulate numbers (CCT,
OC, QL, IL, WC, IG)

5. Use/manipulate strings (CCT, OC,
QL, IL, WC, IG)

6. Use/manipulate lists (CCT, OC,
QL, IL, WC, IG)

7. Use/manipulate dictionaries (CCT,
OC, QL, IL, WC, IG)

8. Use/manipulate tuples (CCT, OC,
QL, IL, WC, IG)

9. Use/manipulate files (CCT, OC,
QL, IL, WC, IG)

3. Manipulate the flow of control 1. Create/use assignment
statements, expression statements
and print operations (CCT, OC,
QL, IL, WC, IG)

2. Create/use if tests (CCT, OC, QL,
IL, WC, IG)

3. Explore syntax rules (CCT, OC,
QL, IL, WC, IG)

4. Create/use while and for loops
types (CCT, OC, QL, IL, WC, IG)

5. Create/use iterations and list
comprehensions (CCT, OC, QL, IL,
WC, IG)

6. Explore documentation (CCT, OC,
QL, IL, WC, IG)

4. Design/create/use functions 1. Explore function basics (CCT, OC,
QL, IL, WC, IG)

2. Examine scope (CCT, OC, QL, IL,
WC, IG)

3. Create/use arguments (CCT, OC,
QL, IL, WC, IG)

4. Create/use iterations and list
comprehensions CT, TS, R, W)

1. Work with modules
1. Examine module structure (CCT,

OC, QL, IL, WC, IG)
2. Use/manipulate module coding

(CCT, OC, QL, IL, WC, IG)
3. Use/manipulate module packages

(CCT, OC, QL, IL, WC, IG)

2. Create/use classes

1. Examine class structure (CCT, OC,
QL, IL, WC, IG)

3. Examine basic class coding (CCT,
OC, QL, IL, WC, IG)

4. Examine advanced class coding
(CCT, OC, QL, IL, WC, IG)

5. Examine operator overloading (CCT,
OC, QL, IL, WC, IG)

6. Explore designing classes (CCT,
OC, QL, IL, WC, IG)

3. Program exception handling and
tools

1. Examine exception basics (CCT,
OC, QL, IL, WC, IG)

2. Examine exception coding (CCT,
OC, QL, IL, WC, IG)

3. Explore exception objects (CCT, OC,
QL, IL, WC, IG)

4. Explore designing with exceptions
(CCT, OC, QL, IL, WC, IG)

To strengthen core competencies** in
order to increase success in this and
other courses and in the workplace.

*Try to express an outcome as an infinitive phrase that concludes this sentence: At the end of the course, the students should be able to
Finding the line between too general and too specific can be difficult. In an English Composition course, for instance, it is probably too general to
say, "The student should be able to write effective essays." It is probably too specific to say, "The student should be able to write an introductory
paragraph of at least 50 words, containing an attention-getting device, an announcement of the narrowed topic, and an explicit thesis sentence."
Just right might read, "The student will write introductions that gather attention and focus the essay."

**Indicate the Core Competencies that apply to the outcomes activities and assessment tools: critical and creative thinking (CCT); oral
communications (OC); quantitative literacy (QL); information literacy (IL); written communication (WC); civic engagement (CE); integrative learning
(IG); global learning (GL).

