
Approved by CTIM Department: September 2003

OUTCOMES BASED LEARNING MATRIX

Course: CTIM371 – Programming in C++

Department: Computer Technology and Information Management

Course Description: This is the first course in the C++ programming language. The course will cover general program

structures, functions, variable naming rules, iteration statements (for, while, do/while), arithmetic and relational

operators, arrays, an introduction to pointers, and an introduction to objects. Hands-on programming exercises will be

completed using the college's workstation computers and Visual Studio C++ compiler.

Lecture: 2 Hours Laboratory: 2 Hours

Prerequisite: Beginning Windows or higher and Beginning Word or higher and Beginning Excel or higher and Software

Design and Development or permission of Department.

While completing the table below, remember that the individual outcomes you list in the first column should answer this question: What must the

learner know and be able to do at the end of the course? Items in the third column should answer the question: How do we know? The second

column is where teachers can be most creative; it's for pedagogy. Each rectangle in column one should contain just one outcome; the

corresponding rectangles in columns two and three, however, may contain more than one item. Using the code at the end of the matrix, indicate

the core competencies being strengthened by the outcomes activities and the assessment tools.

COURSE OUTCOMES OUTCOME ACTIVITIES ASSESSMENT TOOLS

At the end of this course, the student will

be able:

1. To introduce the hybrid (high level /

low level) C++ programming language.

1. Describe source code, compilers,

linkers, assemblers, and machine

code. (WC)

2. Identify the five steps in the

program development cycle.

(WC)

3. Write a simple C++ program.

(WC)

4. Use comments, declare different

integer data types and decide

when to use them. (WC)

5. Use the cout output stream

object to display strings and

variable data. (WC)

6. Use the cin input stream object

to input data. (WC)

7. Use arithmetic operators and

understand operator precedent

rules. (WC)

8. Solve simple problems involving

integers. (WC)

1. Homework: Exercises from the

end of the chapter.

(WC,IL,QL,IG)

2. Computer Lab/Homework:

Design & development computer

programs given the problem

definitions. (WC,CCT,QT,IG)

3. Exam: Course Objective test.

(WC,IL,CCT,QT,IG)

COURSE OUTCOMES OUTCOME ACTIVITIES ASSESSMENT TOOLS

2. To understand real numbers in C++

programming.

1. Declare float and double variables.

(R)

2. Use cin to input and cout

to display formatted decimal

numbers. (WC)

3. Solve problems using decimal

numbers. (WC)

4. Use mixed-mode arithmetic

expressions, data promotion, and

type casting. (WC)

5. Understand the evaluation aspect

of a C++ expression. (WC)

6. Use the compound assignment,

increment, and decrement

operators. (WC)

1. Homework: Exercises from the

end of the chapter.

(WC,IL,QL,IG)

2. Computer Lab/Homework:

Design & development computer

programs given the problem

definitions. (WC,CCT,QT,IG)

3. Exam: Course Objective test.

(WC,IL,CCT,QT,IG)

COURSE OUTCOMES OUTCOME ACTIVITIES ASSESSMENT TOOLS

3. To understand the concept of iteration

in C++ programming.

1. Write conditional expressions

using relational and Boolean

logic operators. (WC)

2. Use the while and do while

statements to implement

indefinite iteration loops. (WC)

3. Use loops and the cin.get ()

member function to obtain

characters from the input buffer.

(WC)

4. Use embedded assignment

operators in the condition

expression of a while loop.

(WC)

5. Use counters and accumulators.

(WC)

6. Use the for statement to

implement definite iteration

loops. (WC)

Code nested while and for

loops. (WC)

1. Homework: Exercises from the

end of the chapter.

(WC,IL,QL,IG)

2. Computer Lab/Homework:

Design & development computer

programs given the problem

definitions. (WC,CCT,QT,IG)

3. Exam: Course Objective test.

(WC,IL,CCT,QT,IG)

COURSE OUTCOMES OUTCOME ACTIVITIES ASSESSMENT TOOLS

4. To understand the concept of data-

driven program execution flow control in

C++ programming.

1. Code an if-else statement to make

simple decisions. (WC)

2. Code compound condition

expressions using logical and

Boolean operators. (WC)

3. Code nested if-else statements to

make complex decisions. (WC)

4. Write a program that uses nested

if-else statements. (WC)

5. Code a switch statement to

select 1/N cases. (WC)

6. Use the break statement to

prematurely exit from a loop.

(WC)

7. Use the continue statement to end

the current iteration of a loop.

(WC)

1. Homework: Exercises from the

end of the chapter.

(WC,IL,QL,IG)

2. Computer Lab/Homework:

Design & development computer

programs given the problem

definitions. (WC,CCT,QT,IG)

3. Exam: Course Objective test.

(WC,IL,CCT,QT,IG)

COURSE OUTCOMES OUTCOME ACTIVITIES ASSESSMENT TOOLS

5. To understand arrays in C++

programming. To fortify the students

for Advanced C++ Programming.

1. Declare arrays and initialize

arrays. (WC)

2. Realize that array

subscripts/indexes are expressions.

(WC)

3. Use for loops to process arrays.

(WC)

4. Code a linear search of an array.

(WC)

1. Homework: Exercises from the

end of the chapter.

(WC,IL,QL,IG)

2. Computer Lab/Homework:

Design & development computer

programs given the problem

definitions. (WC,CCT,QT,IG)

3. Exam: Course Objective test.

(WC,IL,CCT,QT,IG)

COURSE OUTCOMES OUTCOME ACTIVITIES ASSESSMENT TOOLS

6. To understand the use of functions in

C++ programming and to fortify the

students for Advanced C++

Programming

1. Understand how functions work in

C++ programming. (WC)

2. Using C++ library functions.

(WC)

3. Declaring user function

prototypes. (WC)

4. Code user functions with

arguments passed by value and

with return values. (WC)

1. Homework: Exercises from the

end of the chapter.

(WC,IL,QL,IG)

2. Computer Lab/Homework:

Design & development computer

programs given the problem

definitions. (WC,CCT,QT,IG)

3. Exam: Course Objective test.

(WC,IL,CCT,QT,IG)

*Try to express an outcome as an infinitive phrase that concludes this sentence: At the end of the course, the students should be able to Finding the line between too

general and too specific can be difficult. In an English Composition course, for instance, it is probably too general to say, "The student should be able to write effective essays." It

is probably too specific to say, "The student should be able to write an introductory paragraph of at least 50 words, containing an attention-getting device, an announcement of the

narrowed topic, and an explicit thesis sentence." Just right might read, "The student will write introductions that gather attention and focus the essay."

**Indicate the Core Competencies that apply to the outcomes activities and assessment tools: Critical Thinking (CT); technology skills (TS); oral communications (OC);

quantitative skills (QS); reading (R); writing (W).

**Indicate the Core Competencies that apply to the outcomes activities and assessment tools: Critical and Creative Thinking (CCT); Integrative Learning (IG); quantitative

Literacy (QL); Information Literacy(IL); Information Literacy(IL). Approved by the CTIM Department – September, 2015

