Course: Discrete Mathematics **Course Number**: MATH218 **Department:** Mathematics

Course Description: This course is designed to give necessary mathematical background to students in computer science programs. Topics include logic, sets, basic number theory, induction and recursion, counting, relations, and graphs. Prerequisite: C- or higher in MATH217 Precalculus; waiver by placement testing results; or departmental approval.

COURSE OUTCOMES	SAMPLE OUTCOMES ACTIVITIES	SAMPLE ASSESSMENT TOOLS
Upon successful completion of this course students should:	To achieve these outcomes students may engage in the following activities:	Student learning may be assessed by:
1. Demonstrate an understanding of logic and proofs; (QL)	 Express written statements as statements using propositional logic notation Use propositional logic to determine truth values of statements Examine strategies for writing mathematical proofs and for avoiding mistakes in writing proofs 	 Homework In-class problem sets Quizzes Exams
2. Demonstrate an understanding of set notation, matrices, and functions; (QL)	 Use set notation to represent a collection of objects Perform set operations Examine properties and operations of functions Develop notation for sequences and summations Examine notation and operations involving matrices Describe growth rates of functions using big-O notation 	 Homework In-class problem sets Quizzes Exams

3. Demonstrate an understanding of necessary concepts from introductory number theory; (QL)	 Perform operations using modular arithmetic Convert numbers between different bases Determine whether values are prime and use the Euclidean algorithm to find the greatest common divisor Solve congruences 	 Homework In-class problem sets Quizzes Exams
4. Prove mathematical statements using induction; (QL)	 Determine when mathematical induction serves as an appropriate proof technique Perform proofs by induction by constructing appropriate basis and inductive steps Determine when strong induction or the well-ordering property should be used in proofs Define functions recursively and perform proofs involving recursively defined functions 	 Homework In-class problem sets Quizzes Exams
5. Use counting techniques for problem solving; (QL)	 Use the product, sum, inclusion-exclusion, and division rules to solve counting problems Use the Pigeonhole Principle to solve counting problems Determine the difference between combinations and permutations and using each in solving counting problems 	 Homework In-class problem sets Quizzes Exams

	• Solve applications of recurrence relations	
6. Demonstrate an understanding of the relationship between elements of sets; (QL)	 Determine when a relation is reflexive, symmetric, antisymmetric, and/or transitive Represent relations using matrices and/or graphs. Find equivalence classes 	 Homework In-class problem sets Quizzes Exams
7. Demonstrate an understanding of graphs; (QL)	 Examine definitions and terminologies of basic graph theory Construct graphs Classify paths and connectivity of graphs Determine whether a graph has an Euler circuit or an Euler path Determine whether a graph has a Hamiltonian path 	 Homework In-class problem sets Quizzes Exams

This course includes the following core competencies: Quantitative Literacy (QL)