OUTCOMES BASED LEARNING MATRIX

Course: College Physics I(PHSY 151)

Department: Physical Science

Revised: Fall 2007

At the end of the course, students will be able to: Students will participate in:

Faculty will evaluate:

COURSE OUTCOMES	OUTCOME ACTIVITIES	ASSESSMENT TOOLS
Introduction:	- lectures, discussions, and	- Tests with emphasis on solving
	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
- describe the scientific method.	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
	sample problems. (CT, R, QS)	OC)
- convert between units in various	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
systems using algebraic	QS)	
cancellation of units.	- Measurement Lab (CT, R, QS, TS)	
	- organizing and documenting	
- skillfully use common laboratory	information in lab reports. (CT, W,	
instruments to measure length,	QS)	
mass, and time.		
Motion in One Dimension:	- lectures, discussions and	- Tests with emphasis on solving
	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
- define and describe displacement,	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
velocity and acceleration.	sample problems. (CT, R, QS)	OC)
	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
- interpret graphs of displacement,	QS)	
velocity or acceleration vs. time and	- Graphical Analysis of Accelerated	
use the graph to qualitatively relate	Motion Lab and Acceleration Due To	
the quantity to the other two.	Gravity Lab. (CT, R, QS, TS)	
	- organizing and documenting	
- solve motion problems using	information in lab reports. (CT, W,	
equations of motion.	QS)	

Vector Analysis:	- lectures, discussions and demonstrations. (CT, QS, OC)	- Tests with emphasis on solving problems (CT, W, QS, R)
- find the components of a vector.	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
- add vectors graphically.	sample problems. (CT, R, QS)	OC)
	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
- add vectors mathematically using	QS)	
components.	- Vector Lab. (CT, R, QS, TS)	
	- organizing and documenting	
- interpret the product of a vector	information in lab reports. (CT, W,	
and a scalar, as well as vector	QS)	
subtraction.		
Motion in Two Dimensions:	- lectures, discussions and	- Tests with emphasis on solving
 develop equations of motion for 	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
motion in a plane.	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
	sample problems. (CT, R, QS)	OC)
- analyze motion in a plane using	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
components, including projectile	QS)	
motion and circular motion.	- Projectile Motion Lab (CT, R, QS, TS)	
- solve projectile motion and other	- organizing and documenting	
two-dimensional problems using	information in lab reports. (CT, W,	
equations of motion	QS)	
Newton's Laws:	- lectures, discussions and	- Tests with emphasis on solving
- to analyze common situations with	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
Newton's First and Third Laws	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
- predict the acceleration of several	sample problems. (CT, R, QS)	OC)
kinds of motion using vector	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
components and Newton's Second	QS)	
Law. These include connected-body	- Newton's Second Law on the Air	
	Track Labs (CT, R, QS, TS)	

(continued on next page)	(continued on next page)	
(continued from previous page)	(continued from previous page)	(see previous page)
and inclined plane problems and	- Forces In Equilibrium Lab (CT, R,	
problems with friction.	QS, TS)	
- analyze the forces on a body in	- organizing and documenting	
translational equilibrium	information in lab reports. (CT, W,	
	QS)	
Work and Energy:	- lectures, discussions and	- Tests with emphasis on solving
- calculate work done by a variety of	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
forces.	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
- use the Work-Energy Theorem to	sample problems. (CT, R, QS)	OC)
solve motion problems.	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
- identify which types of energy are	QS)	· · · · · ·
present in a given situation, and	- Conservation of Energy Lab (CT. R.	
decide if conditions in a problem	QS. TS)	
indicate that energy is conserved.	- organizing and documenting	
- apply the concept of power to solve	information in lab reports. (CT. W.	
problems involving the rate of work	QS)	
being done or the rate of energy	~~/ ~/	
transformation.		
Impulse and Momentum:	- lectures, discussions and	- Tests with emphasis on solving
- calculate impulse and momentum.	demonstrations. (CT. QS. QC)	problems (CT, W, QS, R)
- use impulse and momentum to	- reading the textbook including	- Lab performance (CT QS TS R
solve problems involving	sample problems (CT R QS)	OC)
interactions between objects (e.g.	- solving assigned problems (CT R	- Lab reports (W_QS_CT)
collisions) This includes elastic and	QS)	
perfectly inelastic collisions	- Ballistic Pendulum Lab (CT R	
periodily morable combinition.	QS, TS)	
	- organizing and documenting	
	information in lab reports. (CT. W.	
	QS)	

Rotational Motion: - describe the basic variables of rotational motion angular displacement, velocity and acceleration. - recognize the analogy between rotational motion and linear motion through the use of a different coordinate system. - analyze and solve rotational motion problems using the rotational forms of equations of motion, Newton's Laws, Conservation of Energy, and Conservation of Angular Momentum	 lectures, discussions and demonstrations. (CT, QS, OC) reading the textbook, including sample problems. (CT, R, QS) solving assigned problems. (CT, R, QS) Centripetal Force Lab, Moment of Inertia Lab. (CT, R, QS, TS) organizing and documenting information in lab reports. (CT, W, QS) 	 Tests with emphasis on solving problems (CT, W, QS, R) Lab performance (CT, QS, TS, R, OC) Lab reports (W, QS, CT)
General: - when solving a problem, determine which approach is the appropriate one (Newton's Laws, Conservation of Energy, Conservation of Momentum; linear or rotational cases). - master techniques of algebra and trigonometry necessary to do the analyses listed above.	 lectures, discussions and demonstrations. (CT, QS, OC) reading the textbook, including sample problems. (CT, R, QS) solving assigned problems. (CT, R, QS) experiments during lab sessions. (CT, R, QS, TS) organizing and documenting information in lab reports. (CT, W, QS) 	 Tests with emphasis on solving problems (CT, W, QS, R) Lab performance (CT, QS, TS, R, OC) Lab reports (W, QS, CT)