OUTCOMES BASED LEARNING MATRIX

Course: General Physics I(PHYS161) Department: Physical Science Revised: Fall 2007

At the end of the course, students will be able to:

Students will participate in:

Faculty will evaluate:

COURSE OUTCOMES	OUTCOME ACTIVITIES	ASSESSMENT TOOLS
Introduction:	- lectures, discussions, and	- Tests with emphasis on solving
	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
- describe the scientific method.	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
	sample problems. (CT, R, QS)	OC)
- convert between units in various	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
systems using algebraic	QS)	
cancellation of units.	- Measurement Lab (CT, R, QS, TS)	
	- organizing and documenting	
- skillfully use common laboratory	information in lab reports. (CT, W,	
instruments to measure length,	QS)	
mass, and time.		
Motion in One Dimension:	- lectures, discussions and	- Tests with emphasis on solving
	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
- define and describe displacement,	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
velocity and acceleration.	sample problems. (CT, R, QS)	OC)
	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
- interpret graphs of displacement,	QS)	
velocity or acceleration vs. time and	- Graphical Analysis of Accelerated	
use the graph to qualitatively relate	Motion Lab and Acceleration Due To	
the quantity to the other two.	Gravity Lab. (CT, R, QS, TS)	
-develop an understanding of the	- organizing and documenting	
derivative of a polynomial and trig	information in lab reports. (CT, W,	
functions and their application to	QS)	

motion.		
- solve motion problems using		
equations of motion.		
Vector Analysis:	- lectures, discussions and demonstrations. (CT, QS, OC)	- Tests with emphasis on solving problems (CT, W, QS, R)
- find the components of a vector.	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
- add vectors graphically.	sample problems. (CT, R, QS) - solving assigned problems. (CT, R,	OC) - Lab reports (W, QS, CT)
- add vectors mathematically using	QS)	
components.	- Vector Lab. (CT, R, QS, TS) - organizing and documenting	
- interpret the product of a vector	information in lab reports. (CT, W,	
and a scalar, as well as vector	QS)	
subtraction.		
Motion in Two Dimensions:	- lectures, discussions and	- Tests with emphasis on solving
- develop equations of motion for	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
motion in a plane.	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
	sample problems. (CT, R, QS)	OC)
- analyze motion in a plane using	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
components, including projectile	QS)	
motion and circular motion.	- Projectile Motion Lab (CT, R, QS, TS)	
- solve projectile motion and other	- organizing and documenting	
two-dimensional problems using	information in lab reports. (CT, W,	
equations of motion	QS)	
Newton's Laws:	- lectures, discussions and	- Tests with emphasis on solving
- to analyze common situations with	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
Newton's First and Third Laws	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
- predict the acceleration of several	sample problems. (CT, R, QS)	OC)
kinds of motion using vector	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
components and Newton's Second	QS)	

T 701 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37	
Law. These include connected-body	- Newton's Second Law on the Air	
	Track Labs (CT, R, QS, TS)	
(continued on next page)	(continued on next page)	
(continued from previous page)	(continued from previous page)	(see previous page)
and inclined plane problems and	- Forces In Equilibrium Lab (CT, R,	
problems with friction.	QS, TS)	
- analyze the forces on a body in	- organizing and documenting	
translational equilibrium	information in lab reports. (CT, W, QS)	
Words and Engage		Tooks with smulessis on solving
Work and Energy:	- lectures, discussions and	- Tests with emphasis on solving
-calculate work done by a variety of	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
forces.	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
-develop a basic understanding of	sample problems. (CT, R, QS)	OC)
integral calculus and its application	- solving assigned problems. (CT, R,	- Lab reports (W, QS, CT)
to work and potential energy	QS)	
problems.	- Conservation of Energy Lab (CT, R,	
-use the vector dot product to	QS, TS)	
determine the work done by a force.	- organizing and documenting	
- use the Work-Energy Theorem to	information in lab reports. (CT, W,	
solve motion problems.	QS)	
- identify which types of energy are		
present in a given situation, and		
decide if conditions in a problem		
indicate that energy is conserved.		
- apply the concept of power to solve		
problems involving the rate of work		
being done or the rate of energy		
transformation.		
Impulse and Momentum:	- lectures, discussions and	- Tests with emphasis on solving
- calculate impulse and momentum.	demonstrations. (CT, QS, OC)	problems (CT, W, QS, R)
- use impulse and momentum to	- reading the textbook, including	- Lab performance (CT, QS, TS, R,
- use impuise and momentum to	- reading the textbook, including	- Lab periorinance (O1, QD, 1D, It,

solve problems involving interactions between objects (e.g., collisions). This includes elastic and perfectly inelastic collisionsuse calculus in rocketry applications.	sample problems. (CT, R, QS) - solving assigned problems. (CT, R, QS) - Ballistic Pendulum Lab. (CT, R, QS, TS) - organizing and documenting information in lab reports. (CT, W, QS)	OC) - Lab reports (W, QS, CT)
Rotational Motion: - describe the variables of rotational motion angular displacement, velocity and acceleration using basic and calculus expressions recognize the analogy between rotational motion and linear motion through the use of a different coordinate system Define and determine the moment of inertia of discrete and geometric masses using generalized equations and integration analyze and solve rotational motion problems using the rotational forms of equations of motion, Newton's Laws, Conservation of Energy, and Conservation of Angular Momentum solve angular momentum problems	- lectures, discussions and demonstrations. (CT, QS, OC) - reading the textbook, including sample problems. (CT, R, QS) - solving assigned problems. (CT, R, QS) - Centripetal Force Lab, Moment of Inertia Lab. (CT, R, QS, TS) - organizing and documenting information in lab reports. (CT, W, QS)	- Tests with emphasis on solving problems (CT, W, QS, R) - Lab performance (CT, QS, TS, R, OC) - Lab reports (W, QS, CT)

using the vector cross product.		
General: - when solving a problem, determine which approach is the appropriate one (Newton's Laws, Conservation of Energy, Conservation of Momentum; linear or rotational cases) master techniques of algebra, trigonometry and calculus necessary to do the analyses listed above.	- lectures, discussions and demonstrations. (CT, QS, OC) - reading the textbook, including sample problems. (CT, R, QS) - solving assigned problems. (CT, R, QS) - experiments during lab sessions. (CT, R, QS, TS) - organizing and documenting information in lab reports. (CT, W, QS)	- Tests with emphasis on solving problems (CT, W, QS, R) - Lab performance (CT, QS, TS, R, OC) - Lab reports (W, QS, CT)