Course: Topics in Mathematics Course Number: MATH154 Department: Mathematics Fall 2025 This course is provided for students who wish to know what mathematics is all about but who do not wish to be mathematicians. Possible topics are: elementary logic, set theory, number systems, mathematical systems, number theory, voting coalitions, geometry, mathematics of finance, topology, linear programming, game theory, and cryptography. A selection of three or more such topics are offered each semester. Prerequisite: waiver by placement testing results; or departmental approval. | COURSE OUTCOMES | OUTCOMES ACTIVITIES | SAMPLE ASSESSMENT TOOLS | |---|---|--| | Upon successful completion of this course students should: | To achieve these outcomes students may engage in the following activities: | Student learning may be assessed by: | | Demonstrate an understanding of the language and basic definitions of set theory in order to apply them to solve related problems involving set operations. | Use set notation. Indicate a set using description, roster, and setbuilder notation. Distinguish between 'is an element of' and 'is a subset of.' Identify the empty set. Identify the universal set for a given problem. Distinguish between subset and proper subset. Determine the number of distinct subsets of a set. | Problem Sets Quizzes Tests | | Solve problems using basic set operations and Venn diagrams to develop the skills needed to solve related problems in this and other courses. | Identify a compound statement as a negation, conjunction, disjunction, conditional, or biconditional. Translate statements from symbolic logic to English and from English to symbolic logic. Use DeMorgan's Laws. Write the converse, inverse, and contrapositive of a statement. Translate arguments into symbolic form. Write the negation of statements involving all, some, some not, and none. | Problem Sets Quizzes Tests | | Construct truth tables in order to use them to solve related problems | Determine the basic truth tables for negation, conjunction, disjunction, conditional, and biconditional. Construct truth tables for compound statements. Use truth tables to determine if compound statements are equivalent. Determine the truth value of a compound statement. Use truth tables and comparison to standard forms to determine the validity of an argument. | 1. 2. 3. | Problem Sets Quizzes Tests | |--|---|----------------|----------------------------------| | Demonstrate an understanding of additive, multiplicative, positional, and ciphered systems of numeration in order to gain an appreciation for numeration systems other that the Hindu-Arabic system. | Convert back and forth between an additive system, such as the Egyptian or Roman numeration system, and the Hindu-Arabic system of numeration. Convert back and forth between a multiplicative system, such as the traditional Chinese numeration system, and the Hindu-Arabic system of numeration. Convert back and forth between a positional system, such as the Babylonian or Mayan numeration system, and the Hindu-Arabic system of numeration. Convert back and forth between a ciphered system, such as the classical Greek numeration system, and the Hindu-Arabic system of numeration. Add and subtract in some or all of the numeration systems mentioned above. | 1. 2. 3. | Problem Sets Quizzes Tests | | Perform conversions within base ten and between base ten and other bases and perform computations in other bases in order to better understand the Hindu-Arabic system of numeration. | Convert among standard form, expanded form, and written form. Multiply using some or all of the following methods: a. Successive duplication, b. Mediation and duplation, c. Lattice method, d. Napier's rods. Convert between base ten and other bases, | 1.
2.
3. | Problem Sets
Quizzes
Tests | | | 4. Add, subtract, multiply, and divide in bases other than ten. | | |--|--|--| | Determine which properties of a mathematical system are satisfied in a given system in order to better understand these properties as they apply to the Hindu-Arabic numeration system | Identify the set of elements and the binary operations of a given mathematical system. Perform calculations using a binary operation defined by a table. Determine whether or not the following properties are satisfied in either a given finite or a given infinite mathematical system: Closure property, Commutative property, Identity property, Identity property, Distributive property for a system with two binary operations. Determine if a given mathematical system is a group or an abelian group. | Problem Sets Quizzes Tests | | Perform calculations, solve problems, and analyze properties of modulo systems in order to better understand finite mathematical systems. | Determine if two numbers are congruent modulo m. Add, subtract, and multiply modulo m. Solve linear equations in modulo systems. Determine whether or not a given modulo system is an abelian group. Solve applications problems involving modulo systems. | Problem Sets Quizzes Tests | | Demonstrate an understanding of some of the basic results in number theory in order to gain an appreciation of number and numeracy. | Apply the rules of divisibility. Find all the divisors of a given number. Determine if a given number is prime or composite. Write the prime factorization of a given composite number. Find the greatest common divisor of two numbers. Find the least common multiple of two numbers. Determine if a number is abundant, deficient, or perfect. | Problem Sets Quizzes Tests | | | 8. Determine if two numbers are friendly | | | |---|--|----------------|----------------------------------| | | numbers. | | | | Demonstrate an understanding of sequences in order to gain an appreciation of number and numeracy. | Determine the next term of a given sequence. Determine if a given sequence is arithmetic, geometric, Fibonacci, or neither. For an arithmetic sequence whose first term and common difference are known, find The next several terms, The general term, The sum of the first n terms. For a geometric sequence whose first term and common ratio are known, find The next several terms, The general term, The sum of the first n terms. For a Fibonacci sequence whose first two terms are known, Find the next several terms, Find the ratios of successive terms and compare this sequence of ratios with the 'golden ratio.' | 1.
2.
3. | Problem Sets Quizzes Tests | | Demonstrate an understanding of various voting methods and various apportionment methods in order to gain an appreciation of these methods as seen in real-life applications. | Solve election problems using the plurality method, the Borda count method, the plurality with elimination method, the pairwise comparison method, the sequential pairwise comparison method, and/or the approval voting method. Determine if a given voting method violates the majority criterion, the Condorcet criterion, the monotonicity criterion, and/or the independence of irrelevant alternatives method. Explain Arrow's Impossibility Theorem. Solve apportionment problems using the Hamilton method, the Jefferson method, and the Webster method. Explain the quota rule, the Alabama paradox, the population paradox, and the new states paradox. | 1.
2.
3. | Problem Sets
Quizzes
Tests | | | 6. Verify that a specified paradox occurs for a | | | |---|--|----------|------------------| | | given apportionment scenario. | | | | | 7. Explain the Balinski and Young Impossibility | | | | ' | Theorem. | | | | Demonstrate an understanding of basic definitions | Correctly identify lines, rays, half-lines, and line | 1. | Problem Sets | | and properties of Euclidean geometry and | segments. | 2. | Quizzes | | measurement formulas in order to solve related | Correctly identify acute angles, right angles, | 3. | Tests | | | obtuse angles, and straight angles. | | | | problems. | 3. Correctly identify triangles as obtuse, right, or | | | | | obtuse, and as scalene, isosceles, or | | | | | equilateral. | | | | | 4. Correctly identify a given quadrilateral as a | | | | | trapezoid, parallelogram, rhombus, rectangle, | | | | | or square. | | | | | 5. Correctly identify a polygon by the number of | | | | | its sides. | | | | | 6. Solve problems involving vertical angles, | | | | | complementary angles, and supplementary | | | | | angles.Solve problems involving parallel lines cut by a | | | | | transversal. | | | | | 8. Solve problems involving the sum of the angles | | | | | in a polygon. | | | | | 9. Solve problems involving similar triangles and | | | | | congruent triangles. | | | | | 10. Solve problems involving right triangles and | | | | | the Pythagorean Theorem. | | | | | 11. Use measurement formulas to find | | | | | a. Perimeter of polygons, | | | | | b. Area of triangles and quadrilaterals, | | | | | c. Circumference and area of circles, | | | | | d. Volume of rectangular solids, pyramids, | | | | | cylinders, cones, and spheres, | | | | Her sincele and server and interest forwards in | e. Surface area of three-dimensional objects. | 1 | Duchlam Cata | | Use simple and compound interest formulas in | Calculate simple interest and maturity value. | 1. | Problem Sets | | order to solve applications problems involving | Calculate compound interest and maturity value. | 2.
3. | Quizzes
Tests | | interest rates. | 3. Calculate present value. |)
 | lests | | | 5. Calculate present value. | L | | | | 4. Understand and compute effective annual yield.5. Find the value of an annuity. | | | |---|--|----------------|----------------------------------| | Use formulas involved in installment buying in order to make informed decisions in real-life situations involving buying on credit. | Determine the amount financed, the installment price, and the finance charge for a fixed loan. Determine the APR. Compute unearned interest and the payoff amount for a loan paid off early. Find the interest, the balance due, and the minimum monthly payment for credit card loans. Calculate interest on credit cards using the unpaid balance method, the previous balance method and/or the average daily balance method. | 1.
2.
3. | Problem Sets Quizzes Tests | | Examine the cost of home ownership in order to make decisions as an educated consumer. | Compare and contrast fixed-rate mortgages and variable-rate mortgages. Given information on income and monthly payments due, determine the maximum mortgage amount a given home buyer is qualified to borrow. Compute interest costs for a fixed-rate mortgage. Compute the down payment. Prepare a partial loan amortization schedule for a fixed-rate mortgage. Compute closing costs. | 1.
2.
3. | Problem Sets Quizzes Tests | | Demonstrate an understanding of investing in stocks, bonds, and mutual funds in order to make decisions as an educated consumer. | Compare and contrast stocks, bonds, and mutual funds as investments. Get information from stock tables. Calculate the basic cost for a given number of shares of a specific stock using stock tables. Calculate broker fees. For a given investment scenario, find the total purchase price, the total dividend amount, the capital gain or loss, the total return, and the percentage return. | 1.
2.
3. | Problem Sets
Quizzes
Tests | | | 6. Find the t | otal return earned by a given bond | | | |--|--|--|----------------|----------------------------| | | investmer | | | | | | | ffective rate of return for a given | | | | | | nd scenario. | | | | Demonstrate an understanding of the basic definitions and properties of network theory, topology, hyperbolic geometry, elliptic geometry, and fractals in order to develop an appreciation for the nature of non-Euclidean geometry. | are even a 2. Determine not. 3. Find a pat 4. Solve rela 5. Identify th 6. Determine equivalen 7. For hyper a. Identify resport b. Identify geome c. Explair | polic and elliptic geometry y at least one mathematician sible for its development. y the surface required for this type of try. how Euclid's parallel postulate is | 1.
2.
3. | Problem Sets Quizzes Tests | | | angles 8. Describe v 9. Use iterat construction | why the sum of the measures of the in a triangle is not 180°. what a fractal is. on techniques to demonstrate the on of a fractal. | | | | Use linear programming methods in order to solve | | ear programming problem by | 1. | Problem Sets | | maximum and minimum problems. | to the the ob b. Graphi of feas c. Deterr region d. Use th which minim | g the appropriate inequalities subject given restrictions or constraints and ective equation. Ing the inequalities to find the region lible solutions. In the corner points of the feasible e objective equation to determine of these points gives a maximum or the corner walue. | 2. 3. | Quizzes Tests | | Danis and streets are used a set and the set of the desired | | ted applications problems. | 1 | Durchland Cata | | Demonstrate an understanding of the basic | | the game matrix for a given two- | 1. | Problem Sets | | definitions and rules of game theory in order to | person ga | me. | 2. | Quizzes | | gain an appreciation of the applications of game theory in business, economics, and the sciences. | Determine whether or not a game matrix represents a strictly determined game. Given the matrix for a strictly determined game, identify the saddle point, find the optimal pure strategy for each player, and the value of the game. Given the matrix for a game that is not strictly determined, find the optimal mixed strategy and the value of the game for the row player. Solve related application problems. | 3. | Tests | | |--|--|----|-------|--| | To strengthen Core Competencies** in order to increase success in this and other courses and in the workplace. | Referenced above | | | | ^{**}Indicate the Core Competencies that apply to the outcomes activities and assessment tools: Quantitative Literacy (QL), Information Literacy (IL), Critical and Creative Thinking (CCT)